Toward complete miniaturisation of flow injection analysis systems: microfluidic enhancement of chemiluminescent detection.

نویسندگان

  • Ana M Gracioso Martins
  • Nick R Glass
  • Sally Harrison
  • Amgad R Rezk
  • Nichola A Porter
  • Peter D Carpenter
  • Johan Du Plessis
  • James R Friend
  • Leslie Y Yeo
چکیده

Conventional flow injection systems for aquatic environmental analysis typically comprise large laboratory benchscale equipment, which place considerable constraints for portable field use. Here, we demonstrate the use of an integrated acoustically driven microfluidic mixing scheme to enhance detection of a chemiluminescent species tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate-a common chemiluminescent reagent widely used for the analysis of a wide range of compounds such as illicit drugs, pharmaceuticals, and pesticides-such that rapid in-line quantification can be carried out with sufficient on-chip sensitivity. Specifically, we employ surface acoustic waves (SAWs) to drive intense chaotic streaming within a 100 μL chamber cast in polydimethoxylsiloxane (PDMS) atop a microfluidic chip consisting of a single crystal piezoelectric material. By optimizing the power, duration, and orientation of the SAW input, we show that the mixing intensity of the sample and reagent fed into the chamber can be increased by one to two orders of magnitude, leading to a similar enhancement in the detection sensitivity of the chemiluminescent species and thus achieving a theoretical limit of detection of 0.02 ppb (0.2 nM) of l-proline-a decade improvement over the industry gold-standard and two orders of magnitude more sensitive than that achievable with conventional systems-simply using a portable photodetector and without requiring sample preconcentration. This on-chip microfluidic mixing strategy, together with the integrated miniature photodetector and the possibility for chip-scale microfluidic actuation, then alludes to the attractive possibility of a completely miniaturized platform for portable field-use microanalytical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waste water ammonia stripping intensification using microfluidic system

This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Determination of albumin in biological fluids by flow injection analysis using the peroxyoxalate chemiluminescent system in micellar medium.

A new sensitive analytical procedure for the determination of albumin is presented, based on the participation of a fluorescent derivative of the protein in the peroxyoxalate chemiluminescent system using imidazole as a catalyst. The chemiluminescent emission is detected in a flow injection analysis (FIA) system, employing micellar medium as carrier, whereas the derivatisation reaction is carri...

متن کامل

Simultaneous separation and detection of cations and anions on a microfluidic device with suppressed electroosmotic flow and a single injection point.

A rapid and simultaneous separation of cationic and anionic peptides and proteins in a glass microfluidic device that has been covalently modified with a neutral poly(ethylene glycol) (PEG) coating to minimize protein adsorption is presented. The features of the device allow samples that contain both anions and cations to be introduced from a central flow stream and separated in different chann...

متن کامل

Development of a microfluidic confocal fluorescence detection system for the hyphenation of nano-LC to on-line biochemical assays

One way to profile complex mixtures for receptor affinity is to couple liquid chromatography (LC) on-line to biochemical detection (BCD). A drawback of this hyphenated screening approach is the relatively high consumption of sample, receptor protein and (fluorescently labeled) tracer ligand. Here, we worked toward minimization of sample and reagent consumption, by coupling nano-LC on-line to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 86 21  شماره 

صفحات  -

تاریخ انتشار 2014